Structure hypergroups for measure algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Synthesis in Segal Algebras on Hypergroups

Warner (1966), Hewitt and Ross (1970), Yap (1970), and Yap (1971) extended the so-called Ditkin's condition for the group algebra L\G) of a locally compact abelian group G to the algebras L(G) Π L(G), dense subalgebras of L{G) which are essential Banach LHO-modules, LKG) Π L(G)(1 ^ p < co) and Segal algebras respectively. Chilana and Ross (1978) proved that the algebra L^K) satisfies a stronger...

متن کامل

On Planar Algebras Arising from Hypergroups

Let A be an associative algebra with identity and with trace. We study the family of planar algebras on 1-boxes that arise from A in the work of Jones, but with the added assumption that the labels on the 1-boxes come from a discrete hypergroup in the sense of Sunder. This construction equips the algebra P A n with a canonical basis, B A n , which turns out to be a \tabular" basis. We examine s...

متن کامل

Reiter P2–condition and the Plancherel Measure for Hypergroups

In this paper we study the Reiter P2 – condition for commutativ hypergroups and give necessary and sufficient conditions for x ∈ supp π, where π is the Plancherel measure. Finally we apply the general results to characterize supp π in the case of polynomial hypergroups. AMS Subject Classification (1991):43A62, 42C05, 43A07

متن کامل

Non-regularity of multiplications for general measure algebras

Let $fM(X)$ be the  space of  all finite regular Borel measures on $X$. A general measure algebra is a subspace  of$fM(X)$,which is an $L$-space and has a multiplication preserving the probability measures. Let $cLsubseteqfM(X)$ be a general measure algebra on a locallycompact space $X$. In this paper, we investigate the relation between Arensregularity of $cL$ and the topology of $X$. We  find...

متن کامل

Weighted Convolution Measure Algebras Characterized by Convolution Algebras

The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1973

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1973.47.413